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Several algorithms are presented for solving linear least squares
problems; the basic tool is orthogonalization techniques. A highly
accurate algorithm is presented for solving least cquares prcblems with
linear inequality constraints. A method is also given for finding th=
least squares solution when there is a quadratic conctraint con the

solution.




0. Introduction

me of the most common problems in any computation center is that of

finding linear least squar:es solutions. These problems arise in a varicty
of areas and in a variety of contexts. For instance, the data may ve
arriving seqrentially from a source and there may be some constraint on
the solution. Iinear least squares problems are particularly difficult
to solve because they frequently involve large quantities cf data, and
they are ill-conditioned by their very nature.

i In this paper, we shall present several numerical algorithms tor
solving linear least squares problems in a highly accurate manner. 1In
addition, we shall give an algorithm for solving linear least squares

problem with linear inequality constraints.

— 1. Linear least sguares

et A be a given mxn real matrix of rank r and b a given

- vector, We wish to deterrine % such that

m n 5
2: (bi - ai.x.) = min.
i=1 j= J J

bt

or using matrix notation

B Hp-AgHE = min. (1.1)
’; If m>n and r < n, then there is no unique soiution. Under these

. conditi ons, we require amongsi those vectors x which satisry {1.1) tiat
-

] i, = min.

» For r=n, % satisfies the normal equations

- 7 -

AA% = A'b . (1.2)

[

Unfortunately, the matrix ATA is frequently ill-conditiornd and

influeticed greatly by roundoff errors. The following example illustrates

fa—

this well. OCuppose

e—y
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r=1

r—4 -4

=1

P~

=4 =4 by

Y1 01 1 1

£ 0 ¢} 0

A= 0 £ 0 0

0 0 3 0

which is clearly of rank 4 . Then
1+e 1 1 1

2
1 l+e 1 .
T, _ a i
AA = 1 1 1+e 1 ]
1 1 1 1+e” |
L J

and ihe eipenvalues of ATA are h+52 s 52 s E 52 . Assume that the
eluments of ATA are computed using double precision aritiuaetic, and then
rounded to single precision accuracy, Now let 1 be the largest number
cn the compute» such that f£2{1+n) = 1 where f2(...) indicates the

flosting point computation. Then if e < /7 ,

1 1 ]
1 1
!
1 1 ?
1 1 J

4 matrix ol rank cne, and consequently, no matter hiow accurate the linear

LA A) =

o e

1
1
1
1

eguaticn solver it will be Impossible to solve the normal equations (1.2).
IONGTEY [1967] has given examples in which the solurion of the normal

equations lends to almost no digits of accuracy of the least squares problem.

2. A matrix decomposition

m o .
.y = (yly)l/“ so that [lqyil, = llyll. when Q {is an orthogonal
2 ho- e AL
matrix, —iz., QTQ =1 . Thus

Jow “! yi

el = floand

wiere - = i oand Q@ is an orthogonal matrix. We choose ( 8o that
. - .o
R I
W =R = J (2.1)
{ 0 } (m-n)xn

r

. S
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where R is an upper triangular metrix (NJ). Let

~ -
b ST V-SRI P
Top ¢ ¢ ¢ Top
R .
= »/g\\
) ] .
\.‘<¥‘/ L
nn
L i}
then
2 2
lo-Axlly = (o -ry 3y -ryp%y = e = 2y )
+(c-r X, = «u0 =T, X )2
e 222 * 2n'n
2
+ e+ (cn ro n)
2 2 2
ot S T TSy
o]
Thus Hb-Axug is minimized when
% X veu %X =c
F11%1 F T Y “in*n = ©1
Top¥y + eee + 1, X = 0
r X =c¢
n'n  n
i.e., Rk = €, where
Y
¢ = (cl,ca,...,cn) s
and
a2 2 2 2 R
HE-AEHZ =Chrt et TG (@.2)
Then

Re = [RI0]T[R:0] = B'R

(2.3)
- [eal el = ATa

and thus R'R is simply the Cholesky decomposition of ATA .
There arc a number of ways to achieve the decomposition of (2.1);
n.g. one could apply = sequence of plane rotations to annihilate the

elements telow the diagonal of A . A very effective method to realize
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the decomposition (2.1) is via Householder transformations. A matrix P

is said to be a Householder transformation if

PeI- EuuT B uTu =1 .

Note that 1) P = PT and 2) PPT =1~ 2uu - QJuT + huuTuu =1 so

.~

that, P ic o symmectbric, orthogonal transformatlon.
el 2
Let. A(l) = A and let A(k) s A()) seees A(n+l) be defined as tollows:

alird) _ plk), (k) (k = 1,2,00.,n)

T .
where P<k) =1 - °w<k> (y) (k) (k) = 1 . The matrix P(h) is
chosen o that aéizly = aéizla = eee = aﬁ?tl) = 0 . Thus after k
Lransformetions _

CL@) @) @)
a1 810 ) ) ‘ &1n
(3) (3)
0 ass . . . . aen
O . . . *
(k+l) (R+l)
A(k+l) - ‘,--’A\\\ “x ) ' %kn
\ 5 (k+1)

fk+1,k+1 ¢

(k+l) a(k+1)
L m,k+l mn |

wote thal Ja (y+‘)| = (E: ik ;i)) )l/ since P(k) is an orthogonal
+ransformation, The details of the computation are given in BUSINGER and
GOLUR [1995) and GOIUB [1965]. The Householder transformations have been used
in a hirhly et'fective manner by KALFON et al. [1968) in the implementation
v the projicention cradient method,

clearly

R = A(n+l)
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=3

and
(n)p(r-1) (1)

Q=P . p

although one need not compute Q explicitly. The musber of multiplications

H s

required to produce R is roughly mn“-(n//3) whorcns approximately
~

mnT/e multiplications are required to form the nermal equations (L..0)

5. The practical procedure

It is known that the Cholesky method for solvire systoems ot cquntions
is numerically stable even i no interchanges ot rows and columns are
performed. OSince we are in effect pertorming a Cholesky decomposition
oft ATA no interchanges of the columns ot A are necded In most
situations. However, numericai experiments have indicated that the
accuracy 1is slightly improved by the interchange stratepies cutlined
below, and consequently, in order to ensure the utmnst accuracy one
should choose the columns of A by some strategy. In what follows,
we shall refer to the matrix A(k\ even if some of the columns have

been interchanged.
th

One possibility is to ohoose at the Kk stage the columns ot
' . . - k+1 co s ; .
A(k) which will maximize lakk )‘ This is equivalent to searchlna for

the maximum diagonal element in the Cholesky decomposition of A AL

let

s(k) - Z( (k))E

) for J = K,k+1,...,n .,
«) J"k ) J
+
lien since (k l)l = (s k) l/ , one should choose that column for whic!.
{ +1

:gk) is mnxunlzed. After A(k ) has been computed, one can compuate
ng*L) as follows:

k+1 k+1),2 .

( ) s§ - (a (,J ) (j = k+tl,...,n)

since the orthoronal transformations leave the column lengths invariant.

Naturally, the sgk> ! A(k)

[y

s must be interchanged it the columns of are

interchansed.
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The above strategy is useful in determining the rank of a matrix,
It the rank of A is r and the arithmetic is performed exactly, then

at'ter r transformations

a
(r+1) Rrxr i ®(n-r)xr
A = | — 20T i Aeel s
0 t )
1d '
s§r+1) =0 for J=xr+l,...,n

which implies N = 0 . In most situations, however, where rounded
arithmetic is used HNH =¢ . It is not easy to determine bounds on ¢
when the rank off A 1is unknown.

The strategy described above is most appropriate when one has a
sequence o.' vectors El’EE""’Bp for which cne desires a least squares
estimate. In many problems, there is but one vector b and one wishes
to express it in as few columns of A as possible, Or more precisely,
orie wishes to determine the k indices such that

)

n "

LAl

Z {v, - Eai; 3(,} )" = min,

i=l ~  v=l "Yuv Yo
e cannot solve this problem, but we shall show how to choose index k
wien the first k-1 indices are given so that the sum of squares of
rcesiduals is maximally reduced. This is Lhe stupe-wise regression problem,

We def'ine

— = .
. . (@) (2)
e 1k TSR %1k
(3) (3)
METIONE Top trr Yok Gap s 8y
25 o
{ L o (k+1)
kk kk
s N i )
; (1) ( (k)K=
Tet f( - L and S(k+1) - p(K) (k) . now RIg(e1) (k) where
-1y
3‘“ b ig tre least squares estimate based on (k-1) columns of A and

NS METINCY NN

; LG ey Thus by (2.2)
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~ . m -
“E(k 1) _ R(k+l)§(k)|!2 - % (C§k+l>>L

joR+1

(c§k+l))2 _ (C£k+l))2

|
™=

1]

J=k

(C(k))2 _ (c£k+l))2

n
.
;t“ﬂs

since length is preserved under an orthogonal transformation. Consequently,

we wish to choose that column of A(k) which will maximize |c£k+1)| R
Let
x) _ ¢ (0) (k)
N =(Za..c. ) for J = ktl,eee,n .
J . ij i
i=k
. (k+1)y _ mo (k) (k)y, (k) .
Then since |ck | = ,(§:i=k ai, cy )/sk | , one should choose ‘hat
column of A(k) for which (tgk))z/s§k) is maximized. After P(k) is
applied to A(k) , one can adjust tgk) as follows:
1) (6] (1) (el
J 3 kJ k

In many statistical applications, if (tgk))2 s(k)

3 is sufficiently small,

then no further transformations are performed.

k., Statistical calculations

In many statistical calculations, it is necessary to compute certain
auxiliary information associated with ATA . These can readily be obtained
from the orthogonal decomposition. Thus

X Tny X r )?
11 22 cer X Thg *

det (ATA) = (r
Gince

ATA =R, (@)t =rWRT

~

The inverse of R can be readily obtained since R 1is an upper itriangular
matrix. It is possible to calculate (ATA)'l directly from R ., Let
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T, -1
(A"A) =X = Ql’fE""’fn) .

Then from the relationship

EX =R
and by noting that {E'T]ii = L/rii , it is possitle to compute X XnopreeerXy
Tie: number of operations 1is roughly the same as in the first method dbut
mcre accurate bounds may be established for this method provided all inner
prcducts are accumulated to double precision.
In some applications, the original set of observations are augmented
vy an additional set of cobservations. 1In this case, it is not nrecessary
ic begin the calculation from the beginning again if the method of

orthogonalization is used. Let ﬁl,E correspond to the original data

1
aiter it has been reduced by orthogonal transformations and let A2’b2
correspond to the additional observations., Then the up-dated least squares

solution can be obtained directly from

=
A, b,
A = ven , b = .:‘?' .

F 5 |
This follows immediately from the fact tlat the product of two orthogonal
transformations is an orthogonal transformation.

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only n(n+l)/2
memory locations are required. By partitioning the matrix A by rows,
however, then similarly only n(n+l)/2 locations are needed when the
methiod of orthogonalization is used.

In ~ertain statistical applications, it is desirable to remove a row
it Lhe matrix A after the least squares solution has been obtained. This

can ve done in a very simple manner. Consider the matrix
R ¢

A = creeae and d = e v

i 9 - i B

where G is the row of A which one wishes to remove, £ 1is the corresponding

element of b, and i =/-1 . Note that
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STS - TR _ ol - ATA _of .
let
cos @ O . . . . sin ©
0 1
21,041 = :
1 0
sin @ 0 -cos ®
- .
(1) _ (2) (1)
S0 =8, and 5T =7 S
We choose cos © 80 that [5(2)} =0 . Thus
n+l1,1
@) 22
877, = /(57,00
(2) - 2 2 .
[8157)) 5 = (rpyry 0@ )/ (e -0 3 =2,3,.00,n
() s 2 2 o
(s }n+1,j a 1(a1r13'ajr11)//xrll‘al) J=2,3,i005n .

Note no complex arithmetic is really necessary. The process is continued

as follows:

Let
k n+l
1 . .
l. : O :
N sin 9, k (k.1)
. 1 .
. 1 .
sin O, * -cos o n+1
h ool
9




Then
o k+1 k
s( ) = zk’n+ls( ) , k=1,2,...,0,

and cos @ is determined so that {S(k+l)}

K,n+1 = 0 . Thus roughly 3n2
multiplications and divisions and n square roots are required to form the
nev R .

Suppose it is desirable to add an additional variable so that the
- matrix A is augmented by a vecter g (say). The first n columns of

R(n) are unchanged. Now one computes

h - pn) . p(2)p(1) g

p(™1) nd appiy it to .. b . This

technique is also useful when an auxiliary serial storage (e.g. magnetic

From h one can compute

tape) is used.
It is also possible to drop one of the variables in a simple fashion
after R has been computed. For example, suppose we wish to drop

variable 1 , then

.. Tie * 1n

- Toy e . .
- i = . .
r
. L M4 nx(n-1)
[
.. By using plane rotations, similar to those given by (4,1), it is possible

to reduce R to the triangular form again.

-

5. Gram-Schmidt orthogonalization

In §2, it was shown ihat it is possitle to write

QA =R . (5.1)

The matrix @ 1is constructed as a product of Householder transformations.

10
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From {5.1), we see that
A = drR = PS

where PP x I, S: N . Each row of S and each column of P is
uniquely determined up to a scalar fact.r of modulus one. In order to avoid
computing square roots, we modify the algorithms so that S is an upper
triangular matrix with ones on the diagonal. Thus PTP = D, a diagonal

matrix, The calculation of P and S may be calculated in two ways.

a) Clagsical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one cclumn at a time, Let

X
al9 - (B1sBos e+ By 28y oo o]

and agsume
p, = 6, d | < i < k-l .
i J i j ]' ’ )

-~

At step k , we compute

Sik = (132;‘ a,/d;) ’ lsigkl
k-1 5
P =8 - .leik Py ’ 4 = llolly -
1=

b) Modified Gram~-Schmidt Algorithm (MGSA)

Here the elements of S are computed one row at a time, We define

A () (9, (%))

= (PpsBoreesBy1s8y seees2
and assume
T 5 T (k) .
~ig,j.i,jdi’gigl = 0 , 1<i,j<k~1 , k<1<n,

At step k , we take Py = aﬁk) , and compute

2 T (x k1 k
"k"”?k“a Sy = (py 55 ))/dk ’ 31(+)"3§ )’sk: Py »

11

k+1 <L <n.




i~

by

i

ol bmd bed b ed bt )

In both procedures, Spp = 1 . The two procedures in the absence of
rourdoff errors, produce the same decomposition. Hcwever, they have
completely different numericel properties when n >2 , If A 1is at all
"ill-conditioned”, then using the CGSA, the computed columns of P will
soon lose their orthogonality. Consequently, one would never use the
CGSA without reortihogonalization, which greatly increases the amount of
computation. Recrthogonalization i1s never needed wnen using the MGSA.

A careful roundoff analysis is given by BJBRK [1967]. RICE [196(] has
shown experimentally that the MGSA produces excellent results.

The MGSA has the advantages that it is relatively easy to program,
and c¢xperimentally (cf. JORDAN [1958]), the least squares solution seems

*o be slipghtly more accurate than the Huuseholder procedure. However, it

reqiiires roughly mnd/2 operations which is slightly more than “hat necessary

in *‘ue Householder procedure. Furthermore, it is not as simple as the

Householder procedure to add observations, and the vectors generated by the

Householder procedure are more nearly orthogonal than those generated by MGSA.

6. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the
least squares problem. For this purpose it is convenient to introduce the

condition number «(A) of a non-square matrix A . This is defined by

8 o/, ooy = el /Lol o o = min sl / sl

2 2
sc that Ul and an are the greatest and the least eigenvaiues of ATA .

From its definition it is clear that «(A) is invariant with respect to

unitary transformations. If R 1is defined as in (2.1) then
(Jl(R) = Ul(A) > O'n(R) = O'n(A) 3 K(R) = k(A) »
while
~ - ~ ~-1
5, (R) = |Rll, and o (R) =1/ |R ||, .

The commonest method of solving least squares problems is via the normal

equations

ATAX = Ab . (6.1)

12
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The natrix ADA is square and we havu

K(A:A) = KE(A) .

This means that if A has a condition number of the order of QL/E then
ATA has a condition number of order Et and it will not be possible

using t-digit arithmetic to solve (6.1). The method of orthogonal
transformations replaces the least squares problem by the solution of

the equations Rx = & and ~(R) = +(A) . I* would therefore scem to have

number KE(A) .
We now show that this last remark is an oversimplification. To this
end, we compare the solution of the original system [A . b] with that of

a perturbed system. It is convenient to assume that
o, = llally = lou, = 1 5

this is not in any sense a restriction since we can make [lAll, and [jbll,
of order unity merely by scaling by an appropriate power of two. We now

have
Y- (R = IR7H -
k(A) = k(R) = |R77l, = 1/o, .
Consider the perturbed system
(A+eE:b+ee) , [E;=lel,=1,

where ¢ 1is to be arbitrarily small., The sclution x of the perturbed

system satisfies the equation

(A + eE)T (A + eB)R = (A + eE) (b + ce) . (6.2)

~

I7 ¥ 1is the exact solution of the original system and @ 1is the exact

orthogonal transformation corresponding to A we have

ﬁ -] ﬁ + ¢F r
A= |, QA+EE)e= | .ivieeee] , Qea=}.r.
0 eG - g
and
r=rt-Ax |, A'r =0 .
13
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Equation (6.2) therefore becomes

(A + eE) (A + eE) = (AT + EET)(Ai( + o+ ee)

giving
r T - T -
{ R+ eF R+ eF|_ R + ¢F R by ™
ceeens ceseed X = | cevann ceefx + gl T 1+ eETr .
eG eG |7 eG o1~ g -

[n}

- . [=
derlecting ¢ where advantageous,

~ r ~ - ~ TNA ~ m 2
(R + eF)r(R + eF)x = (R+ eF)” Rx + e(R + eF)T o+ eE r+ 0(e)

x = (F + eF)-l Rx + e(k + eF)-l f o+ e(RTﬁ)-l Er o+ O(ce)
=% -eR Yt Ex+erlr o+ s(;Tﬁ)'l Er + 0(e”)
giving '
- a - N ~a | ~=1p2 2
-5, < ell® lHEHFHerH2 + eflR lllgllfﬂz + ellR 1||2 Bel lixll, + o(e™)

< ek®)El, + ex@) + e @zl + o(e%) .

2 R
e observe that the bounds include a term ek (A)”r”2 . It is easy to
wverify by means of a 3 x 2 matrix A that this bound is realistic and
that an error of this order of magnitude does indeed result from almost

any such perturbation E of A . We conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in

the use of the normal egquations the value K2(A) is still relevant to some

extent.

when the equations are compatible ||-1:||2 = O and the term in K2(A)
disappears., In the non-singular linear equation case r is always null
and hence it is always k(A) rather than K2<A) which~is relevant.

Since the sensitivity of the solution depends on the condition number,
it is frequently desirable to replace the original unknowns x by a new
vector of unk:owns D-lx where D 1is a diagonal matrix with~non-zero

~

diarenal elements. Thus we wish to find ¥ for which

lb-c3ll,, = min.

14
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where C =AD and § =D % . Let 8 be the set of all n x n diagonal

matrices with non-zero diagonal elements. We wish to choose D so that
« (AD) < «x(AD) for all De§ -
Q Q
Let Dep and {D},, = I/Haillq . VAN DER SIUIS [1968] has shown that
o . ~
«(AD) < /n «(AD) .

Therefore in the absence of other information, it would appear that it is
best to precondition the matrix A so that all columns of the matrix A
have equal length. In practice, one adjusts the exponents of the stored
elements of A so that the mantissa of the floating point representation

is not changed.

7. Iterative refinement for least squares problemrs

The iterative refinement method may be used for improving the

solution to linear least squares problems. Let

so that

©
i
=3
o
U
>
w
£
]
©

When @ = 1, the vector p 1is simply the residual vector r . Thus

al { A o b
5 Sl =] e. , (7.1)
A 0 X ] '
or
Cg = g R

One of the standard rethods for solving linear equations may now be used
to solve (7.1). However, this is quite wasteful of memory space since the
dimension of the system to be solved is (m+n) . We may simplify this
problem somewhat by noting with the aid of (2.3) that

15
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AT | o 7:3‘AT -/—l&-iiT 0 -/l—aﬁ

Once an approximate solution to Cy = g has been obtained, it is
frequently possible to improve the accu;acy~of the approximate solution.
Tet y be an approximate solution, and let v = g-Cy . Then if y = y+b ,

anisfies tne equation -7 -0

Co=v . (7.3)

#que. . on {7.3) can be solved approximately from the decomposition (7.2). Of
course, it ic not possible to solve precisely for b so that the process
may b repeated. )

wWe are now in a position to use the iterative refincment method
{er. MOLER [1967], WILKINSON [1967]) for solving linear equations. Thus one

mislt proceed as follows:

(o)

1) Solve for x using one of the orthgonalization procedures outlined

inf 2 or 5. R must be saved tut it is not necessary to retain Q . Then

S(o) = é (P-A:‘(O))

(s+1)

Z) The vector y is determined from the relationship

NCSINOMO)

wliere

o8 e L (7.4)

This calculation is simplified by solving

) (s)
UF(S) = Z(s) .
(s)

The vector v must be calcula*ed using double precision accuracy and

then rounding to single precision.

16
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0 b is less *‘han .

T

3) Terminate the iteration vhen
prescribed number.

Note that the computed residual vector is an approximation to the
residual vector when the exact solution %X 1is known. This may difrer
from the residual vector computed trom the approximate solution to the
least squares problem,

There are three sources ot error in the process: (1) computation
(s)

of the vector - , (2) solutien or the system of equations tor the
. - s - i s N .
correction vector D( ° , and (3) addition of the ccrrection vector to
. . - (s . .
the approximation y( ) .( %t is absolutely necessary to compute the
s

components of the veczor v using deuble precision inner products and
then to round to single pr;cision aocuracy. The convergence eof the iterative
refine. 1t process has been discussed in detail by MOLER [1967]. Generally
speaking, for a large class of matrices for Kk > ko all components of g(s)
are the correctly rounded single precision approximations to che components
of y . There are exceptions to this, however, (cf. KAHAN [1965]).
Expe;imentallys it has been observed, in most instances, that if

I

180, / Iy{l, <27 vhere

W, = max vl
1<i<n

then ko > [t/p] . We shall return to the subject of iterative refinement
when we discuss the solution of linear ieast squares problem with linear
constraints,

A variant of the above procedure has been analyzed by BJORCK [1967v],
[1968], and he has also given an ALGOL procedure. This has proved to be
a very effective method for obtaining highly accurate solutions to linear

least squares problems,

8. Least squares problems with constraints

Frequently, one wishes to determine X so that Hb-A?(“2 is minimized
subject to the condition that Gx = h where G is a pxn matrix of rank p .

ne can, of course, eliminate p of the columns of A by Gaussian elimination

after a pxp non-singular submairix of G has been determined and then solve

17
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the resulting normal equations. Thig, unfortunately, would not be a numerically

stable scheme since no row interchanges between A and G would be permitted.

If one uses lagrange multipliers, then one must solve the (u+p)x (n+p)

system of equations.

B I B (8.1)

where A is the vector of lagrange multipliers. Since % = (ATA)'IATb-(ATA)_lGTh

)

where

LS

Ncte =z 1is ithe least squares solution of the original problem without
ccnstr;ints and one would frequently wish to compare this vector with the
r'inal soluticn % . The vector =z » of course, should be computed by the
orthogonalizatioa procedures disc;ssed earlier.

Since A'A = BF, G@ATA) 6T = WW where W= R IGT . After W is
computed, it should be reduced to a pxp upper triangular matrix K by

orthogonalization. The matrix equation

KTKK = Gz-h

should be solved by the obvious method. Finally, one computes
- - T
X = z-(ATA) Lgha
-1.T ~e
where (ATA) 15 A can be easily computed by using R L
It is also possible to use the techniques described in §7. Again,
let r = L-AX so that from (8.1)

r I A 0 ( by ] [ b
e Rog (8.2)
AT oo ol % = o)
0 ¢l o A h
- ) L7 L 7
18
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or

Dz =g .

Note D is an (m+n+p)x(méntp) matrix. We may simplify the solution

of (8.2), however, by noting that

(s ialo ] [ ‘ :

I |4A;O I 0 0 ( I|{A] 0
ATl ofd | =] aBiE o o{ R|-B (8.3)
o} Gl o J 0 BT st o} 0] s

where B = (Gﬁ'l)T = PS and PP =1 with S : J - The decomposition
(8.3) can be used very effectively in conjunction with the method ot iterative
refinement. BJORCK and GOLUB [1967] have given a variant of the above

procedure which requires Q@ and P .

9. Linear least squares solutions with inequality constraints

Again let A,G be given real matrices of orders mxn , pxn , with
m>n, and let b, h be given real vectors of orders m , p . For any

vector X we define
r = b=AX

and we wish to determine an x such that

Our procblem can ther=fore be stated as follows: find r , x, w such that

zrAx =b
Gx-w=t
¥29

ETE = min.

19
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These problems can be solved by quadratic programming but we present
an algorithm in this section which may lead to a much smaller system of
equations and which yields highly accurate results,

If we define

{r,w,x,y,2) = % fo - ZT(£+Ax-b) - ET(Gx-w-h)

~ e — ~ o~ e

where we require without loss of generality that =z > © , then an equivalent

protlem is to determine r,w,x,y,z such that

W,z > ©
and

f 1is stationary.

Equating tc zero the partial derivatives of f with respect to r,x,y,z
respectively, we get
r-y =0

Ay -Gz =290

Furtier, le. the elements of w,z be LN (1 = 1,2,...,p) . Then

lew if we > 0 in the optimal solution, the constraint v >0 is not

vindin~ and we have

of 4
N =4
n
I
-

i.e.,

w, >0 => 2z, = 0 ,
1 1

Since z > 0, this further means thot

20
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z, >0 = w, = 0 .,
1 1

(For otherwise, z. >0 =>w, >0 =>2, = 0 wh'ch is a contradiction.)
’ i i i

Accordingly, our problem has become one of finding a solution of the

system
r + AX =D (9.1)
ATE + GTE = 9 (3.2)
Gx -w=nh (9.3)
such that
T

2> , w>6 , zw=0 .

We now determine an orthogonal matrix Q and an upper-triangular

matrix R such that
A=Qr ,

where R is nxn and non-singular if rank(A) =n . Then
A'A - RPQ'R = B'R .

Letting B = (GR-l)T and eliminating r from (9.1) and (9.2) it is easily
verified that

~ 'l
X =X+ R Bz ’ (9°h)
where

= CRTR)'l ATy

150

is the unconstrained least squares solution (i.e., the solution of (9.1) and

(9.2) with z =0 o % is found by the methods of §7.

-~

We now determine if X satisfies the original inequalities: if we
define q-= G?-E and find that q > @ then the constraints are salisfied
and % soclves the problem.

~

Otherwise, we substitute (9.4) in (9.3) and obtain
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where we further require (9.5)

z>68 , w>0 , sz =0

Thus we find that z,w solve the linear complementarity prcblem {ICP)

defined by (9.5). This is a fundamental mathematical programming problem
and several algorithms have been developed for finding solutions (e.g. see
LEMKE [1968], COTTLE [1968], COTTIE and DANTZIG [1968]). The matrix M = BB
is positive semi-definite, and this is one of the cases when, for example,
the principal pivoting method in COTTLE [1968] guarantees termination with
a solution, or with an indication that none exists.

Once 2z has been found it would be a simple matter to substitute

into (9.1), (9.2) and find r,x from

r + Ax

b
- . (9.6)

ATr -GTz

In practice, however, if we are -~oncerned with the accuracy of our estimate

of x we use the solution of the ICP (9.5) only to determine which elements

of g are exactly zerc. These are the wi which are non-basic in the
solution of (9.5). (There is certainly at least one such ¥ for
otherwise we would have 2z =0 , w >0 , which is the case checked for
earlier in determining wh;the; or n;t § solved the problem.)

We now delete from {9.3) those con;traints for which wi is basic,

obtaining an £xn system of equations

GXx =

[ B

where 1 <£f<p.
If z 1is the vector 2z with the corresponding elements deleted, the

remaining step is to solve the system
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r + Ax = b
ATr + ETE =9 (s.7)
Gx =

where we are now working with original data and can therefore expect a
more accurate solution than could be obtained from (9.6). We can now apply
the methods of §8 to this system of equa’ions.

The standard methods for solving the linear complementarity problem
aiploy the elements of w as the initial set of bLasic variables, with all

elements of z initially non-basic. In general, it is probable tha: only

a small proportion of the inequalities in the original problem will be

constraining the system, which: means that only a small prcportion of the wi

will be non-zero. Hence it might be expected in general that only a small
number of iterations (relative to P ) should be required to bring some of
the z; into the basis and reach a feasible solution.
In our particular form of the problem, since the matrix M = BTB
has its largest elc.ents on the diagonal, accuracy can be conserved, to
within the limits of the error in forming M , by interchanging rows
whenever a column of M 1is brought into the basis in such a way that the
diagonal elements of M become diagonal elements of the basis matrix.
This is easily done if the LU decomposition of the basis is calculated
each i<eration as in the treatment of the simplex method by BARTEILS [19/8]
and BARTELS and GOLUB [1969].
Note that B = (GP.'l)T can be detemined column by column via

repeated back-substitution on the system

T T

The algorithm presented here can be used for any quadratic programming
probvlern when a positive definite quadratic form is given. Suppose we wish
d

etermine a1 x such that

(9.8)
subject to Gx > h

e — o ¢



o =S .
- bince C 1is positive definite, we may write
T
I C =FRR
- where R(N]) is the Cholesky factor of C . Such & decomposition can
l encily oe computed. If we now define b = - é R-Td (and calculate b
from Rrb = - #d ) we find that
- ~ -~
l b - RxlZ = blb - 2b°Rx + X R'Rx
I LT, T T,
= L'b+dx+ xCx
Y ind consequently if we de-ermine an x such that
I o - R:lt = min.
cutject to Gx > h
I iien x will satisfy (9.8) as required.
10. Singular systems
I If the rank of A 1s less than n and if column interchanges are
I rerrormed to maximize tne diapgonal elements of R , then
A(r+1) _ “rxr Is(n-r)xr
o 0 r~—«o
1 L
wvhen rank(A) = r . A sequence of Householder transformations may now be
; -+
i I srriied on the right of /\.(r 1) so that the elements of S(n r)xr become
5 ~nnit.ilated. Thus dropping subscripts and superscripts, we have
I T|o
WZ = T =
I oio
I where 7 is an  rxr upper triangular matrix., Now
l 2L
e ——————————
e —— - O —
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b Xl = ”E - Q? T ZTicl2

lle ~yll,

where ¢ =Qb and y = ZTx . Since T 1is of rank r , there is no unique

-~

solution so that we impose the condition that [I%l, = min, But Iy, = i1,

since 7 is orthogonal, and HyH2 = min. when

Vs

X
1
[\

Tris solution has been given by FADEEV, et, al. [1968] and HANSON and
IAWSON [1968]. There still remains the problem of determining the rank

numerically, and this will be discussed in §l12.

il. Singular value decomposition

Let A be a real, mxn matrix (for notational convenience we assume
that m >n ). It is well known (cf. IANCZOS [1951]) that

A = UZV® (11.1)

where

and

} (m=n)xn

.

- .

The matrix U consists of the orthonormslized eigenvectors of AAT , and

the matrix V consists of the orthonormalized eigenvactors of ATA . The
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diascnal elements of L are the non-negative square rools of tlie elgenvalues

ol AIA ; they are called singular values or principal values cf A . We

assume

01 > 02 Z e 2 On >0 .
Thus 1i° rank(A) = r , gy = Tpyn = vve =9, =C The decomposition
{11.1) is called the singular value decomposition (SVD).
Let
. 0 A
A = . (11.2)
AT 0

T+ sun be slown that the non-zero eigenvilues of A always cccur in +

MR =+ 9 (A) (3 = 1,2,e.0,7) . (11.3)

12. Applications of the SVD

~he sinmular vzlue decomposition plays an important role in a number

o lougt sguares problems, and we will illustrate this with some examples,

Threrrlout this discussiun, we use the FEuclidean or Frobenius norm of a

. PR r o
NALINE 1

oy PRVYY

L 2.1/
\\Al‘ = (L'a},JI )

et u ve the set of all nxn orthogonal matrices. For an arbitrary

1

nxy. renl matrix A, determine Qaun such that

iA-Qil 2 a-x|}  ror any Xecu, .

—i

ing veen shown by FAN and HOFFMAN [1955) that if

A = UIV , then Q= (Wl .
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3) An important generalization of problen. A occurs in factor analysis.

For arbitrary nxn real matrices A and 3B , determine Qeun such that
la-BQf| < [|A-Bx||  for any Xeu =~ .
It has been shown by GREEN [1952] and by SCHONEMANN [195€¢] that if

BIA = UZv'  , then Q= W%

C) Let m(ki b the set of all mxn matrices of rank k . Assume
iy
Aémir) . Determine B /(k) (k <r) such that
n,n Pyn K S

la-Bll < o=  for a1 xen™) .

It has been shown by ECKART and YOUNG [1936] that if

A= sy’ , then B = Unva (12.1)
where
o -
" O
%
0 = O T . (12.2)
k
lote that
2 2y1/2
la-Bl = flz-s, ]l = (2, + .on + DY (12.3)

D) An nxm matrix X is said to be the pseudo-inverse of an mxn

matrix A if X satisfies the following four properties:

r-
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i) AXA =A,
i1) XaX =X,
1ii) (Ax)T =AY,
iv) (xa)f =xa .

Wwe denote the pseudo-inverse by A+ . We wish to determine A+ numerically.
It can be shown (cf. PENROSE [1955]) that AY can always be determined and

is unique. It is easy to verify that

At = vt (12.4)

where

- -

1
b O
a1
%
A = . .
O 1
g
r

O

L J nxn

In recent years there have been a number of algorithms proposed for
computin:- the pseudo~inverse of a matrix., These algorithms usually depend
upor: a knowledge of the rank of the matrix or upon some suitably chosen
paramter. For example in the latter case, if one uses (12.4) to compute
the pseudoc-inverse, then after one has computed the singular value
d--ermposivion numerically it is necessary to determine which of the singular
olies are cerc by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as
A = B+5B
where B is a matrix of perturbations and

llBll <n .




Now, we wish to construct a matrix B such that

lla-Bll <
and

rank (B) = minimum .

This can be ac omplished with the aid of the solution to problem (C). Let

o

Bk = UQkV
where @ is defined as in (12.2). Then using (i2.3),

B=8

1Y
if
2 2 2,1/2
+ “ee

(Op+l op+2 + + cn) <

and

(0§+62 +...+cil/2 > 10 .

P+l

Since rank(B) = p by construction,
B* = vo'uT .
P
at . . +
Thus, we take B as our approximation to A .

E) Let A be a given matrix, and b be a known vector. Determine %X

~

so that amongst all x for which Hb:AxH2= min , H%H2= min. It is easy

to verify that

1334
"
-

o

13. Calculation of the SVD

It wac shown by GOLUB and KAHAN [1965] that it is possible to construct

a sequence of orthogonal matrices

29
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J P(k)}“ PO
k k=l L _fk=1

via Householder transformation so that

p(mpn-1) (10 (1)g(2)  (n-2) Ty |
and J 1is an mxn bi-diagonal matrix of the form

a B 0 . ¢ 1

[

i 1 P

| a, B, . 0O |

| T

i i

; (/—t> : Bn—y

‘ \\\_/ ' !

N a i
n_|

* D sz(m-n)xn .

The singular values of J are the same as those of A ., Thus if the

singular value decomposition of

Xy

J

“hen
T T
A = PXIY Q
~o that

U=°X , V=q .

GOLUR [1958]) has given an algorithm for computing the SVD of J ; the
aloorithm is based on the highly effective QR algorithm of FRANCIS [1961, 1962]
t'or computing the eigenvalues.

It is not necessary to compute the complete SVD when a vector b is
yriven. Oince % = VE+UTE , it is only nocessary to compute V,Z an; UTb 3

note, this has n strong flavor of principsl component analysis. An AIGOL
vrocedure for the SVD has beeen given by GOLUB and REINSCH [1969].
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1k, Quadratc consirainis

We wish to determine % so that

HE'Afn2 = min.
when

“fng =a .
Siwch problems occur in a number of situations, e.g. in the numerical solution
cf integral eguations of the first kind {cf. PHILLIPS [1962]), and in the

sclution of non-linear least squares problems (cf. MARQUARDT [1963]).

Using Lagrange rmultipliers, we are led to the equation
- T

(ATA-A*I)X =AD

wiere the real constant A¥ is determined as the smallest root of

2 -2
a“-bTA(ATA-xI) Alv =0 . (1k.1)

Using the decomposition A = UZV: and ¢ = b , equation (14%.1) becomes

ae-cTz(zg-xI)'gzc =0 .

A combination of bisection and Newton iteration may be used to determine )% .

2
c23ily shown *hat A% < a“:n (cf. FORSYTHE and GOIUB [1965]).

mi

i

t 1s also possible to determine XA¥ as a solution tc an eigenvaluc
trotlem using a technique given by FORSYTHE and GOLUB [1965]. Consider the
Ident ity

P

[, Y
-1
dnnl = det(X) det (W-ZX 7Y)
L.Z 7]

which ic wvalid for any partitioned matrix with X and W square and

det{(X) £ 0 . Thus (1k.1) is equivalent to the determinantal equation
T 2 T
(}A A-\I) A'b
det i - =0 .
2
! blA o
\_ ~
31
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llow there existes a vecter p and a muesber 3 such *hat
2 2
(ATA-XI) p+ Aqu = y bTAp +aqg=0 .

A cimple elimination snows that A% muct satisfy the determinantal equation

o
=

det[(A*A-2I)T - o ATwba] =0 . (14.2)

It i5 poszible to transform (iL.2) intc a 2nx2n ordinary eigenvalue

proulem.

Once A% ic determined, *l.¢ cclution % can be computed from the

[ah¥as

SVD o A . Thus,

>~
s



‘_-_-Fﬂml"“1r'1r"1r“17"1.‘"12'18"1?"1"'l"1—1

oA Mot A Y e A

References

JretoTIn

Bartels, R. H. [1968], "A numerical investigation of the simplex method",
Technical Report No. CS 104, Computer Science Dept., Stanford
University, California.

Bartels, R. H. and G. H. Golub [19¢9], "The simplex m thod of linear
programming using LU decomposition", Comm. ACM 12, 5, pp. 266-268.

BiBrek, A. [1967a], “Sclving linear least squares problems by Gram-Schmidt
orthogonalization", BIT, 7, pp. 1-21.

B;Brck, . [1967b], "Iterative r finement of Jin. ~ > -~ -~mares ol *ion I,
BIT, 7, pp. 257-278.

o
3jBrek, A, [1968], "Iterative refinement of linear least squares solutions II",
BIT, 8, pp. 8-30.

o
£3Br-k, A. and G. H. Golub [19€7], "Iterative refinement of linear least
squares solutions by Houscholder transformation", BIT, 7, pp. 322-337.

“isinger, P. and G. H. Golub [1965], "Linear least squares sclutions by
Householder transformations”, Num. Math., 7, pp. 269-276.

Jottle, R. W, [lQSu] "The principal pivoting method of quadratic
programmlng ; Mathematics of the Decision Sciences, Part 1,
5. B. Dantzig and A. F. Veinott, cds., pp. 144-162.

Zz*cle, R. W. and G. B. Daﬁuzib [1968], "Complementary pivot theory of
mathematical programming”, in Mathematics of the Decision Sciences,
Part 1, G. B. Dantzig and A. F. Veinott, eds., pp. 115-136.

Loecart, C. and G, Young [195¢], "Ihe upproximation of one matrix by anolher
of lower rank", Psychometrika, 1, pp. 211-218.

radeev, D. K., V. N. Kublanovskays, and V. N. Fadeeva [1968], "Sur les

zystemes lineaires algcebriques de matrices rectangulaires et mal-

zonditionnees", In Proiramrotion en Mathiemaliques Numeriques, Fditions

&1 Centre National de la Recherche . Scientifique, Paris VII.

s, F. oand A, Hoffman [1955], "Some metric inequalities in the space of
matrices”, Proc., Amer. Math. Soc., 7, pp. 111-116.

Porsithe, Go E.oand Go . Golub [1945], "On the stationary values of a
cecond-degree polynomial on the nit, sphere", J. SIAM, 13, pp. 1050-1.08,

rersyine, Go E. and Co Moler [1%7], Computer Solution of Linear Algebrai-
Sysiems, Proentice-liall, Englewood Cliff's, New Jersey.

vpancic, J. [L01, 1962], "The QR transformation. A unitary analogue to
*he IR transformation", Comput. J., 4, pp. 265-271,

e ——

1ub, G. He [1965], "Numerical methods for solving linear least squarcs
problems”", Num. Math., 7, pp. 206-216.

W
N




G G N ae OeE Em oEn omd Ey g ey G P e bed  ped  eed e

Golub, G. H. and W. Kahan [1965], "Culculating the cingular values and
pseudo-inverse of a matrix", J. SIAM, Numer. Anal. Ser. B, 2, pp. 205-22k.

Golub, G. H. and J. Wilkinson [1966], "Iterative refinement of least
squares solution", Num. Math., 3, pp. 139-1L48.

Golub, G. H. [1968], "Least squares, singular values and matrix approximaticns",
Aplikace Matematiky, 13, pp. 4k-51.

Golub, G, H. and C. Reinsch [1969], "Singular value decomposition and least
squares solution", Technical Report No. CS 131, Computer Science Dept.,
Stanford University, California.

Green, B. [1952], "The orthogonal approximation of an oblique structure in
factor analysis", Psychometrika, 17, pp. 429-1u0.

sRg oot nd,

argon, R, ard 7, Ioveon [1549]) "Extcencicons and applications of the
touscholder algorithm for solving linear least squares problems”,
<2t Propulsion Laboratory.

iiciceholder, A, 8. [1958], "Unitary triangularization of a nonsymmetric
matrix”, J. Assoc. Comput. Mach., 5, pg. 339-3h42.

Jirdan, T. [1948], "Experiments on error growth associated with some linear
leact-squares procedures”, Math. Comp., 22, pp. 579-588.

Yavan, w. [19£6], "Numerical linear algebra", Canad., Math. Bull., 9,
pp. 757-801.

utilisant la triangularisation unitairc". Publication no. FT/11.3.8/AI
C:ntre National de la Recherche Jcientifique Institut Blaise Pascal.

omoe, Co [1901], Linear Dilfurenijal Operators, Van Nostrand, London,

s, Co El (1
5

- 2015100

i), "On cemplementary pivot theory", Mathematics of the
viences, Part 1, 5. P. Dartzis and A, F. Veinott, eds.,

1. S5-11k,

iy, de [1e7l, MAn appraisa: o Least squares problems for the electronis
wompat ey trom the point of view of the user”, JASA, 62, pp. 819-841.

Vnraguardy, We L10W2], VAn uleeritim vor least-squarcs estimation of nonlincar
J. SIAM, 1iI, pp. «+71-441,

g}
3
i
-~
L
o]
[ 8]
-
<

Mirer, Co by lie7), "Iterative refinement i floating point", J. Assoc.
Comput., Mach., 1k, pp. 31 <301,

Forrese, K. [1955], "A generaliced inverce for matrices", Proc. Cambridge
Philos. Suu., 51, pp. WOC-417,

1
A4




R

‘F"ll""l"'!l"‘l:"l.‘“‘t.““?."‘!.w.l,l.-l.v?"l!""!!—!—!-‘——l

Ry,

Phillips, P. [1962], "A technique for the numerica! coclution of certain
integral equaticns of the first kind", J. Assoc. Comput. Mach., 9,

pp. 8k-07.

Rice, J. [1966]), “Experiments on Gram-Schmidt Orthogonalization", Math.
Comp., 20, pp. 325-328.

SchBnemann, P. [1966], "A generalized solution of the orthogonal procrustes
problem”, Psychometrika, 31, pp. 1-10.

van der Sluis, A. [1968], "Condition numbers and equilibration of matrices”,
(unpublished report from Utrecht University, ERCU 37-4).

Wilkinson, J. H. [1963], Roundins Frrors in Algebraic Processes,
Prentice-Hall, Englewood Cliffs, New Jersey.

Wilkinson, J. H. [1967], "The solution of ill-conditional linear equations",
Mathematical Methods for Digital Computers, Vol. II, A. Ralston,
Ph.D. and H. Wilf, Ph.D., eds., John Wiley, New York, pp. 65-93.

35

Cm e ok S . |




oo ¢ v -

Gl Gl GED omn mm Om ey Gom  Guyd by

L I T T S Y o I I I A

r—4

Unclassified

Security Classilication

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered whon the overall report i3 clasaified)

T ORIGINATING ACTIVITY (Corporate author)
Computer Science Department
Stantford University
Stanford, Californie

28. REPCRT SECURITY CLASSIFICATION
Unclassified

2b. GROUP

3 REPORT TITLE

LINEAR LEAST SQUARES AND QUADRATIC PROGRAMMING

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)

Menuscript for Publication (Technical Report)

S AUTHOR(S) (First name, middle initial, jast name)

Gene H. Golub and Michael A. Ssaunders

6 REPORTYT DATE

May 1969

78. TOTAL NO. OF PAGES 7b. NO. OF REFS

38 38

Sa. CONTRACT OR GRANT NO
N1k -67-A-0112-0029
b PROECT NO

R bb-211

08. ORIGINATOR'S REPORT NUMBER(S)

CS 13k

95. OTHER REPORT NO(S) (Any other numbers thet may be assigned
this report)

none

1C DISTRIBUTION STATEMENT

“eleasable without limitations on dissemination.

' SUPPLEMENTARY NOTES

12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

"3 ABSTRACT

madratic constraint on the solutior.,

thie basic teool is orthogonalization techniques.

Several algorithms are presented for solving linear least squares problems;

A highly accurate slgorithm is

i resented for solving least squares problems with linesr inequality constraints.

A methed is also given for finding the least squares solution when there is s

FORM

DD "2*..1473

S/N 0101.807.6801

(PAGE 1)

Unclassified
‘Security Classification




Unclassified
Security Classilication

KEY WORDS

LINK A

LINK B

LiNk C

ROLE

wY ROLE

wT

ROLE

wTY

least squeres
quadratic programming
singular values

iterative refinement

DD 2%..1473 (eacx)

(PAGE 2)

Unclassified

Security Classification




